HPC Planning

(strategic management, procurement, funding)

CRAIG TULL (LBNL)
MARK GARY (LLNL)

Survey/discuss planning best practices from an HPC perspective for software

- First, what is unique about HPC planning?
- Existing HPC planning best practices
- How is project cost planned, managed, monitored?
- Sustainment funding
- Interagency and international cooperation
- Top challenge Forecasting requirements
- Other top HPC planning challenges
- New technologies needed for HPC planning?

First, what is unique about HPC Planning?

- There **are** many similarities and differences with industry. Many industries (eg Google, Sun) do SW research.
- Funding source and reward model are different than industry. However, we are expected to leave behind used systems if we expect sustained funding.
 - Quantitative (\$) measure of success in industry.

What rules and resources exist for HPC project planning?

- ASCR requires OSS license for government-funded products (slight preference for BSD). And encourage copywriting.
- Risk Grading is important
 - o Simulations lead to real-world policy decisions.

What are your best practices?

Early investment

- o Small-scale: Laboratory LDRD & seed funding.
- o Large-scale: PathForward, Alliances, ...

Investment choices

Investment in both software and people are a critical investment choice.

Planning vehicles

- Different approaches from regular, external, formal review to Agile programming
- Tracking and metrics to determine use and value inform quantitative planning/investment decisions by developers, facilities, agencies.
- Vendor/Industry Relationships different models work in different circumstances.
- EVMS too rigid for SW technology innovation.
- Sustainability must be planned for.

Top challenge - Forecasting requirements

- How do you gather requirements and how accurate are they?
 - O Science visits, conferences, requirements database, high-level validation, embedded developers, constraintless thinking paired with allocation process, education & negotiation to mitigate unrealizable expectations, exploration of real/underlying requirement, trouble ticket feature requests (don't always work), face-time and fielding complaints, user-centric documentation & implementation plans, use cases
- When and how often do you do this? Continually
- Do you use metrics to validate requirement extrapolations?
 - Measurability is a best practice, but...
- Do you follow up to verify the accuracy of the requirements?
 - Alpha-user feedback and real-world use are the best measure of accuracy.

Other top challenges surrounding HPC planning

- Funding gap between R&D and applied use by domain scientists
- Measuring impact on delivered science
 - Measuring use is easier, but non-trivial
- Planning occurs at the component level without cross-cutting requirements and design principles.

What new technologies are needed to help with HPC planning?

 Planning rarely benefits from new technologies.

- Standards (focus on science rather than mechanism)
 - o eg. Portable data formats, software bus architectures

What are best practices and tools?

- Continual and conscious seeking of requirements and user feedback.
- Measurement and tracking of use and value to scientists/programs.
- Investment in early technologies, people, and infrastructure.
- Long-term sustainability must be planned and supported.

What are the top challenges?

- Requirements collection & translation into usable code.
- Assessing impact of software projects on science and programs.
- Vendor and technology unknowns.
- Sustainability and funding models.

What new technologies are needed?

None identified.

Findings and Recommendations

- Most/All sites need improvement to facilitate planning.
- We don't have pay-for-use model.
 - Agencies must be willing to sustain critical SW and fund the projectizing necessary.
- Is a SW sustainability center called for?
 - First line of user support for multiple SW.
- Planning occurs at the component level without cross-cutting requirements and design principles.